Skip to contents

User Functions

exported functions

ABCMCMC()
Performs and Approximate Bayesian Computation Sampling of Model Parameters
checkFitWithPreviousExperiments()
ABC acceptance of currently sampled values given old data (Prior)
checkModel()
checkModel tries to establish the simulation file for a given model
determinePrefix()
Determine a prefix from a character vector str of similar contents
dCopulaPrior()
copulaPrior creates a prior probability density function
dNormalPrior()
dNormalPrior creates the density function of a multivariate normal distribution with independent components
dUniformPrior()
dUniformPrior creates a uniform density function
defaultAcceptance()
default ABC acceptance probability function for one experiment
defaultDistance()
default distance function for one experiment
fitCopula()
Makes a Probability Density Estimate (from a sample)
getMCMCPar()
Selects MCMC scheme specific setup parameters
globalSensitivity()
Global Sensitivity Analysis
importReactionsSSA()
Functions to construct and run the stochastic simulation using GillespieSSA2 package
log10ParMap()
LOG10 parameter mapping used by the MCMC module
log10ParMapJac()
LOG10 parameter mapping, jacobian
logParMap()
NATURAL LOG parameter mapping used by the MCMC module
logParMapJac()
NATURAL LOG parameter mapping, jacobian
makeGillespieModel()
Create a list of reactions for GillespieSSA2
makeIndepCopula()
Copula Formulation for Uniform Prior Distributions
makeObjective()
creates Objective functions from ingredients
makeObjectiveSSA()
Function that creates the objective function
mcmc()
Markov Chain Monte Carlo
mcmcInit()
Initialize the Markov chain
mcmcUpdate()
This function proposes an MCMC candidate variable, and either accepts or rejects the candidate
parUpdate()
Updates Parameter Values
plotSimualtionsFromSBtab()
Simulate and plot Data and Simulation
preCalibration()
Determine a starting value for ABC's delta
rCopulaPrior()
rCopulaPrior returns a function that generates random values from the copula model
rNormalPrior()
rNormalPrior returns a random vector generator
rUniformPrior()
rUniformPrior returns a random vector generator
sensitivity.graph()
plot the sensitivity matrix
shs_gsa()
Outputs the global sensitivity scores SI and SIT, calculated by the Sobol-Homma-Saltelli method
shs_prior()
Outpts the random sample on which to perform the Sobol-Homma-Saltelli global sensitivity analysis
simulator.c()
This creates a closure that simulates the model
uqsa_example()
Load an example model for this package
`%otherwise%`
This function can be used to specify default values
smmala_move()
SMMALA move
smmala_move_density()
SMMALA transition kernel density
ggplotTimeSeries()
Plot time series simulations with experimental data
ggplotTimeSeriesStates()
Plot time series simulation with state variables
change_temperature()
Should 2 Markov chains exchange their temperatures
loadSample_mpi()
This function merges mpi-samples into one
mcmc_mpi()
The MPI version of the mcmc function
simc()
This creates a closure that simulates the model, similar to simulator.c

Internal Functions

not exported functions

convert.parameter()
Convert ODE parameter to Gillespie parameter
match.coefficients()
find the coefficients in a formula
match.names()
Find the variable names in a formula
observable.mean.in.bin()
The mean value of an observable value given a parameter bin
parameter.from.kinetic.law()
Attempt to find multiplicative reaction rate coefficients
parse.formula()
Splits a formula into a left and right side
parse.kinetic()
Find forward and backward component in a reaction kinetic
propensity()
propensity creates a propensity formula
sum.of.bin.variance()
Weighted Sum of Bin-specific variances
uqsa uqsa-package
uqsa: Uncertainty Quanitification and Global Sensitivity Analysis via ABC sampling
getDose()
Get the values of the input for a series of dose response experiments
plotDoseResponse()
Plot dose response simulations with experimental data
plotTimeSeries()
Plot time series simulations with experimental data
Rmpi_swap_temperatures()
Communicate with other ranks and swap beta
fisherInformationFromGSA()
Calculate Global Fisher Information
fisherInformationFunc()
Fisher Information from Sensitivity
gatherSample()
gatherSample collects all sample points, from all files, with the given temperature
gradLogLikelihoodFunc()
Default log-likelihood function, gradient
gradLog_NormalPrior()
Gradient of the logarithm of a normal prior
`%has%`
checks whether a variable has the named attributes
loadSubSample_mpi()
This function merges mpi-samples into one
logLikelihoodFunc()
Default log-likelihood function
pbdMPI_bcast_reduce_temperatures()
Broadcast to other ranks and swap temperatures with any of them
pbdMPI_swap_temperatures()
Communicate with other ranks and swap beta
sampleWithNoise()
(for testing) A non-Copula sampling function as fallback
simcf()
This creates a closure that simulates the model, similar to simulator.c
swap_points_locally()
Swap the end-points of two Markov chains