Function reference
-
ABCMCMC()
- Performs and Approximate Bayesian Computation Sampling of Model Parameters
-
checkFitWithPreviousExperiments()
- ABC acceptance of currently sampled values given old data (Prior)
-
checkModel()
- checkModel tries to establish the simulation file for a given model
-
dCopulaPrior()
- copulaPrior creates a prior probability density function
-
dNormalPrior()
- dNormalPrior creates the density function of a multivariate normal distribution with independent components
-
dUniformPrior()
- dUniformPrior creates a uniform density function
-
defaultAcceptance()
- default ABC acceptance probability function for one experiment
-
defaultDistance()
- default distance function for one experiment
-
fitCopula()
- Makes a Probability Density Estimate (from a sample)
-
getMCMCPar()
- Selects MCMC scheme specific setup parameters
-
globalSensitivity()
- Global Sensitivity Analysis
-
importReactionsSSA()
- Functions to construct and run the stochastic simulation using GillespieSSA2 package
-
log10ParMap()
- LOG10 parameter mapping used by the MCMC module
-
log10ParMapJac()
- LOG10 parameter mapping, jacobian
-
makeGillespieModel()
- Create a list of reactions for GillespieSSA2
-
makeIndepCopula()
- Copula Formulation for Uniform Prior Distributions
-
makeObjective()
- creates Objective functions from ingredients
-
makeObjectiveSSA()
- Function that creates the objective function
-
mcmc()
- Markov Chain Monte Carlo
-
mcmcInit()
- Initialize the Markov chain
-
mcmcUpdate()
- This function proposes an MCMC candidate variable, and either accepts or rejects the candidate
-
parUpdate()
- Updates Parameter Values
-
plotSimualtionsFromSBtab()
- Simulate and plot Data and Simulation
-
preCalibration()
- Determine a starting value for ABC's delta
-
rCopulaPrior()
- rCopulaPrior returns a function that generates random values from the copula model
-
rNormalPrior()
- rNormalPrior returns a random vector generator
-
rUniformPrior()
- rUniformPrior returns a random vector generator
-
sensitivity.graph()
- plot the sensitivity matrix
-
simulator.c()
- This creates a closure that simulates the model
-
uqsa_example()
- Load an example model for this package
-
`%otherwise%`
- This function can be used to specify default values
-
smmala_move()
- SMMALA move
-
smmala_move_density()
- SMMALA transition kernel density
-
ggplotTimeSeries()
- Plot time series simulations with experimental data
-
ggplotTimeSeriesStates()
- Plot time series simulation with state variables
-
change_temperature()
- Should 2 Markov chains exchange their temperatures
-
loadSample_mpi()
- This function merges mpi-samples into one
-
mcmc_mpi()
- The MPI version of the mcmc function
-
simc()
- This creates a closure that simulates the model, similar to simulator.c
-
convert.parameter()
- Convert ODE parameter to Gillespie parameter
-
match.coefficients()
- find the coefficients in a formula
-
match.names()
- Find the variable names in a formula
-
observable.mean.in.bin()
- The mean value of an observable value given a parameter bin
-
parameter.from.kinetic.law()
- Attempt to find multiplicative reaction rate coefficients
-
parse.formula()
- Splits a formula into a left and right side
-
parse.kinetic()
- Find forward and backward component in a reaction kinetic
-
propensity()
- propensity creates a propensity formula
-
sum.of.bin.variance()
- Weighted Sum of Bin-specific variances
-
uqsa
uqsa-package
- uqsa: Uncertainty Quanitification and Global Sensitivity Analysis via ABC sampling
-
getDose()
- Get the values of the input for a series of dose response experiments
-
plotDoseResponse()
- Plot dose response simulations with experimental data
-
plotTimeSeries()
- Plot time series simulations with experimental data
-
Rmpi_swap_temperatures()
- Communicate with other ranks and swap beta
-
fisherInformationFromGSA()
- Calculate Global Fisher Information
-
fisherInformationFunc()
- Fisher Information from Sensitivity
-
gatherSample()
- gatherSample collects all sample points, from all files, with the given temperature
-
gradLogLikelihoodFunc()
- Default log-likelihood function, gradient
-
gradLog_NormalPrior()
- Gradient of the logarithm of a normal prior
-
`%has%`
- checks whether a variable has the named attributes
-
loadSubSample_mpi()
- This function merges mpi-samples into one
-
logLikelihoodFunc()
- Default log-likelihood function
-
pbdMPI_bcast_reduce_temperatures()
- Broadcast to other ranks and swap temperatures with any of them
-
pbdMPI_swap_temperatures()
- Communicate with other ranks and swap beta
-
sampleWithNoise()
- (for testing) A non-Copula sampling function as fallback
-
simcf()
- This creates a closure that simulates the model, similar to simulator.c
-
swap_points_locally()
- Swap the end-points of two Markov chains