Function reference
-
ABCMCMC() - Performs and Approximate Bayesian Computation Sampling of Model Parameters
-
checkFitWithPreviousExperiments() - ABC acceptance of currently sampled values given old data (Prior)
-
checkModel() - checkModel tries to establish the simulation file for a given model
-
determinePrefix() - Determine a prefix from a character vector str of similar contents
-
dCopulaPrior() - copulaPrior creates a prior probability density function
-
dNormalPrior() - dNormalPrior creates the density function of a multivariate normal distribution with independent components
-
dUniformPrior() - dUniformPrior creates a uniform density function
-
defaultAcceptance() - default ABC acceptance probability function for one experiment
-
defaultDistance() - default distance function for one experiment
-
fitCopula() - Makes a Probability Density Estimate (from a sample)
-
generateCode() - Write C code
-
generateRCode() - Write R code
-
getMCMCPar() - Selects MCMC scheme specific setup parameters
-
gsa_binning() - Global Sensitivity Analysis
-
gsa_saltelli() - Outputs the global sensitivity scores SI and SIT, calculated by the Sobol-Homma-Saltelli method
-
saltelli_prior() - Outpts the random sample on which to perform the Sobol-Homma-Saltelli global sensitivity analysis
-
importReactionsSSA() - Functions to construct and run the stochastic simulation using GillespieSSA2 package
-
is.invertible() - checks whether a given matrix is a valid, invertible fisherInformation
-
log10ParMap() - LOG10 parameter mapping used by the MCMC module
-
log10ParMapJac() - LOG10 parameter mapping, jacobian
-
logParMap() - NATURAL LOG parameter mapping used by the MCMC module
-
logParMapJac() - NATURAL LOG parameter mapping, jacobian
-
makeGillespieModel() - makeGillespieModel interprets the provided SBtab file as a stochastic model
-
makeIndepCopula() - Copula Formulation for Uniform Prior Distributions
-
makeObjective() - creates Objective functions from ingredients
-
makeObjectiveSSA() - Function that creates the objective function
-
mcmc() - Markov Chain Monte Carlo
-
mcmcInit() - Initialize the Markov chain
-
mcmcUpdate() - This function proposes an MCMC candidate variable, and either accepts or rejects the candidate
-
parUpdate() - Updates Parameter Values
-
plotSimualtionsFromSBtab() - Simulate and plot Data and Simulation
-
preCalibration() - Determine a starting value for ABC's delta
-
replace_powers() - replace_powers
-
rCopulaPrior() - rCopulaPrior returns a function that generates random values from the copula model
-
rNormalPrior() - rNormalPrior returns a random vector generator
-
rUniformPrior() - rUniformPrior returns a random vector generator
-
sensitivity.graph() - plot the sensitivity matrix
-
showPosterior() - showPosterior makes a pairs plot for a sample
-
simulator.stoch() - Function that creates a closure that simulates a stochastic trajectory with the Gillespie algorithm given certain experimental conditions and a parameter vector, and computes the distance between the simulation and the experimental data
-
simstoch() - Simulate stochastic model
-
simulator.c() - This creates a closure that simulates the model
-
uqsa_example() - Load an example model for this package
-
`%otherwise%` - This function can be used to specify default values
-
smmala_move() - SMMALA move
-
smmala_move_density() - SMMALA transition kernel density
-
ggplotTimeSeries() - Plot time series simulations with experimental data
-
ggplotTimeSeriesStates() - Plot time series simulation with state variables
-
change_temperature() - Should 2 Markov chains exchange their temperatures
-
loadSample_mpi() - This function merges mpi-samples into one
-
mcmc_mpi() - The MPI version of the mcmc function
-
simc() - This creates a closure that simulates the model, similar to simulator.c
-
yacasMath() - yacasMath converts math to Ryacas compatible math
-
yJacobian() - Jacobian of string-math
-
simfi() - This creates a closure that simulates the model, similar to simulator.c
-
simfiGaussianLogLikelihood() - SMMALA The default Extractor of the log-likelihood computed bu the simfi solver
-
simfiGaussianGradLogLikelihood() - SMMALA Extract the gradient of the log-likelihood from the simfi solver's return value
-
simfiGaussianFILL() - SMMALA Extract the approximate Fisher infomration from the simfi results
-
gsl_odeiv2_fi() - simulates an ode model with extra work
-
makeGillespieModel() - makeGillespieModel interprets the provided SBtab file as a stochastic model
-
ccc() - Concentration to Count Conversion
-
generateGillespieCode() - Generate C Code to solve a model stochastically
-
onlyCoefficients() - Returns a list of reaction coefficients
-
onlyNames() - Returns only the names in a reaction formula
-
parameterConversion() - Returns information about parameter conversion
-
stoichiometry() - This function returns a list of named stoichiometric vectors
-
scaleParameter() - Retruns a string that contains code to scale the parameter
-
generateCodeFromFile() - Write C code
-
match.coefficients() - find the coefficients in a formula
-
match.names() - Find the variable names in a formula
-
observable.mean.in.bin() - The mean value of an observable value given a parameter bin
-
parameter.from.kinetic.law() - Attempt to find multiplicative reaction rate coefficients
-
parse.formula() - Splits a formula into a left and right side
-
parse.kinetic() - Find forward and backward component in a reaction kinetic
-
propensity() - propensity creates a propensity formula
-
sum.of.bin.variance() - Weighted Sum of Bin-specific variances
-
uqsauqsa-package - uqsa: Uncertainty Quanitification and Global Sensitivity Analysis via ABC sampling
-
getDose() - Get the values of the input for a series of dose response experiments
-
plotTimeSeries() - Plot time series simulations with experimental data
-
Rmpi_swap_temperatures() - Communicate with other ranks and swap beta
-
fisherInformationFromGSA() - Calculate Global Fisher Information
-
fisherInformationFunc() - Fisher Information from Sensitivity
-
gatherSample() - gatherSample collects all sample points, from all files, with the given temperature
-
gradLogLikelihoodFunc() - Default log-likelihood function, gradient
-
gradLog_NormalPrior() - Gradient of the logarithm of a normal prior
-
`%has%` - checks whether a variable has the named attributes
-
loadODE() - Load an ODE model from a file
-
loadSubSample_mpi() - This function merges mpi-samples into one
-
logLikelihoodFunc() - Default log-likelihood function
-
parameters_from_expressions_func() - Function that creates a function that reads the SBtab expression table and computes the expressions (which are functions of parameters) given the parameters passed in input
-
pbdMPI_bcast_reduce_temperatures() - Broadcast to other ranks and swap temperatures with any of them
-
pbdMPI_swap_temperatures() - Communicate with other ranks and swap beta
-
sampleWithNoise() - (for testing) A non-Copula sampling function as fallback
-
simcf() - This creates a closure that simulates the model, similar to simulator.c
-
swap_points_locally() - Swap the end-points of two Markov chains
-
writeCFunction() - Write C Function
-
ggplotDoseResponse() - Plot dose response simulations with experimental data
-
plotTimeSeriesBase() - plot function for experiments