Skip to contents
library(uqsa)
library(SBtabVFGEN)
library(rgsl)

Load Model and Data

First we load the model and data, for detailed explanations see previous examples (Simulate AKAR4 deterministically).

f  <- uqsa::uqsa_example("AKAR4")
sb <- SBtabVFGEN::sbtab_from_tsv(f)
m  <- SBtabVFGEN::sbtab_to_vfgen(sb, cla=FALSE)
ex <- SBtabVFGEN::sbtab.data(sb)
C <- uqsa::generateCode(m)
cat(C,sep="\n",file="./AKAR4_gvf.c")
modelName <- checkModel("AKAR4",modelFile="./AKAR4_gvf.c")

Create simulator

We construct a simulator function and and test it on default parameter values.

s <- simcf(ex,modelName,parMap=log10ParMap) # or simulator.c
p <- log10(sb$Parameter[["!DefaultValue"]])
names(p) <- rownames(sb$Parameter)
y <- s(p) # here the simulation happens

Uncertainty quantification: Sample the posterior distribution

For details on how to sample from the posterior distribution, see, e.g., the deterministic AKAR4 example. First we construct the prior:

sd <- rep(2,length(p))
dprior <- dNormalPrior(p,sd)
rprior <- rNormalPrior(p,sd)
llf <- logLikelihoodFunc(ex)
#> experiments contain 675 non-missing values
metropolis_hastings <- mcmcUpdate(s,ex,logLikelihood=llf,dprior=dprior)
MH_MCMC <- mcmc(metropolis_hastings)

We obtain a high quality sample by following the steps described in details in the deterministic AKAR4 example). This will take a minute or so on a laptop.

A <- function(a) {
    return(0.5 + a^4/(0.25^4 + a^4))
}

set.seed(137)
h <- 5e-2
N <- 3e4

nCores <- parallel::detectCores()
bigSample <- parallel::mclapply(
    seq(nCores),
    \(i) {
        x <- mcmcInit(
            1.0,
            parMCMC=t(rprior(1)),
            simulate=s,
            logLikelihood=llf,
            dprior=dprior)
        ## adjust acceptance rate to 25% via step-size h
        for (i in seq(30)){
            z <- MH_MCMC(x,200,h)
            x <- attr(z,"lastPoint")
            h <- h*A(attr(z,"acceptanceRate"))
        }
        return(MH_MCMC(x,N,h))
    },
    mc.cores=nCores
)

S_ <- Reduce(\(a,b) {rbind(a,b)},bigSample,init=NULL)
L_ <- Reduce(\(a,b) {c(a,attr(b,"logLikelihood"))},bigSample,init=NULL)
colnames(S_) <- names(p)
if (require(hexbin)){
    hexbin::hexplom(S_)
} else {
    pairs(S_)
}
#> Loading required package: hexbin

Sensitivity analysis on the posterior distribution

First we need to (re-)create the simulation result corresponding to the posterior parameter sample. This will take a minute or so on a laptop.

s <- simcf(ex,modelName,parMap=log10ParMap) # or simulator.c
y <- s(t(S_[,]))

Next we calculate the first order sensitivity indexes. Here for compute them for a specific experimental setting and time point:

E <- 2                      # Experiment idx
T <- 60                     # Time idx
fM <- y[[E]]$state[,T,]
SIappr <- gsa_binning(S_, t(fM), nBins = "Sturges")

and plot the result:

cols=rainbow(3)
par(mfrow = c(1, 1))
fM <- y[[E]]$state[,T,]
barplot(t(SIappr),
        col=cols,
        border="white",
        space=0.04,
        cex.axis=0.7,
        legend.text=sb$Parameter[,1])

Here for compute the first order sensitivity indexes for all three experiments, looking at the different compounds in the system (on the x axis):

T <- 200                    #Time idx
par(mfrow = c(1, 3))
for (E in 3:1){
fM <- y[[E]]$state[,T,]
SIappr <-gsa_binning(S_, t(fM) , nBins = "Sturges")
lgd <- list(sb$Parameter[,1], NULL,NULL)
barplot(t(SIappr),
        col=cols,
        cex.names = 0.7,
        las=2,
        border="white",
        space=0.04,
        cex.axis=1,
        main=names(ex)[E],
        legend.text=lgd[[E]])
}

Now we investigate the first order sensitivity indexes at different time points (time is on the x axis) for each of the compounds and one experiment.

E <- 3
timePts <- seq(2,40,by=4)  #Avoid first time point
nStates=dim(y[[E]]$state)[1]
cols=rainbow(3)
par(mfrow = c(1, nStates))
lgd <- rep(list(NULL),nStates)
lgd[[nStates-1]] <- sb$Parameter[,1]
for (Cm in 1:nStates) {
  fM <- y[[E]]$state[Cm,timePts,]
  SIappr <-gsa_binning(S_, t(fM) , nBins = "Sturges")
  names(SIappr) <- timePts
  barplot(t(SIappr),
          col=cols,
          names.arg = timePts,
          border="white",
          cex.axis=1,
          main=dimnames(y[[E]]$state)[[1]][Cm],
          xlab="Time",
          ylab="SI",
          legend.text=lgd[[Cm]],
          args.legend = list(x = "topright", inset=c(-0.1, 0), cex=0.7)
          )
}
mtext(names(ex[E]), side=3, line = - 1.5,outer=TRUE)