Skip to contents
require(SBtabVFGEN)
#> Loading required package: SBtabVFGEN
library(uqsa)
library(GillespieSSA2)

This article provides code to simulate the AKAP79 stochastic model (one time, no sampling). We are plotting the model with default parameters which are not expected to fit the data (this is the starting point).

The Stochastic Model

When the copy number of molecular species in a reaction network system (AKAP79 in our case) is low, we cannot model the amount of molecules deterministically (e.g., with an ODE model), because the stochasticity in the reactions that take place cannot be ignored. In particular, the time at which reactions take place is random, as well as the specific reactions that take place (i.e., what pair of molecules react). To model such system we can use the master equation: we model the (integer) number of each molecule species in the system (e.g., proteins) and how the number of each molecule type (randomly) evolves in time. The likelihood of this model is hard to compute; however, we can easily sample trajectories from this stochastic model using the Gillespie algorithm. Given the current amount of each molecular species in the system at a given time point, we can sample the time at which the next reaction takes place and we can sample the type of reaction (i.e., what pair of molecules react).

Load the Model

This model is included with the package. To load your own model, see the user model article.

modelFiles <- uqsa_example("AKAP79",full.names=TRUE)
SBtab <- SBtabVFGEN::sbtab_from_tsv(modelFiles)
#> [tsv] file[1] «AKAP79_Compound.tsv» belongs to Document «AKAP79»
#>  I'll take this as the Model Name.
#> AKAP79_Compound.tsv  AKAP79_Experiments.tsv  AKAP79_Expression.tsv  AKAP79_Input.tsv  AKAP79_Output.tsv  AKAP79_Parameter.tsv  AKAP79_Reaction.tsv  X0uM_cAMPCaN_AKAP79_0_nM_cAMP.tsv  X0uM_cAMPCaN_only_0_nM_cAMP.tsv  X0uM_cAMPno_CaN_0_nM_cAMP.tsv  X1000nM_cAMPCaN_AKAP79_1_uM_cAMP.tsv  X1000nM_cAMPCaN_only_1_uM_cAMP.tsv  X1000nM_cAMPno_CaN_1_uM_cAMP.tsv  X100nM_cAMPCaN_AKAP79_100_nM_cAMP.tsv  X100nM_cAMPCaN_only_100_nM_cAMP.tsv  X100nM_cAMPno_CaN_100_nM_cAMP.tsv  X2000nM_cAMPCaN_AKAP79_2_uM_cAMP.tsv  X2000nM_cAMPCaN_only_2_uM_cAMP.tsv  X2000nM_cAMPno_CaN_2_uM_cAMP.tsv  X200nM_cAMPCaN_AKAP79_200_nM_cAMP.tsv  X200nM_cAMPCaN_only_200_nM_cAMP.tsv  X200nM_cAMPno_CaN_200_nM_cAMP.tsv  X500nM_cAMPCaN_AKAP79_500_nM_cAMP.tsv  X500nM_cAMPCaN_only_500_nM_cAMP.tsv  X500nM_cAMPno_CaN_500_nM_cAMP.tsv
modelName <- checkModel("AKAP79",uqsa_example("AKAP79",pat="_gvf[.]c$"))
#> building a shared library from c source, and using GSL odeiv2 as backend (pkg-config is used here).
#> cc -shared -fPIC `pkg-config --cflags gsl` -o './AKAP79.so' '/home/andreikr/.local/R/library/uqsa/extdata/AKAP79/AKAP79_gvf.c' `pkg-config --libs gsl`
comment(modelName)
#> [1] "./AKAP79.so"

# In the terminal run the following:
# ``ode.sh -R --maxima AKAP79.tar.gz > AKAP79.R```
# (Read article "..." in the documentation)
system2(command = "ode_uqsa", args = c("-R", "--maxima", "AKAP79.tar.gz"), stdout = "AKAP79.R")
#> Warning in system2(command = "ode_uqsa", args = c("-R", "--maxima",
#> "AKAP79.tar.gz"), : error in running command

# model related functions, in R, e.g. AKAP79_default() parameters
source(uqsa_example("AKAP79",pat='^AKAP79[.]R$'))
print(AKAP79_default())
#>            kf_Rii_C__RiiP_C kf_RiiP_CxcAMP__RiiP_C_cAMP 
#>                    33.00000                     0.49600 
#> kf_RiiP_cAMPxC__RiiP_C_cAMP kb_RiiP_cAMPxC__RiiP_C_cAMP 
#>                     0.00545                     0.01560 
#>     kb_RiiPXcAMP__RiiP_cAMP     kf_RiiPXcAMP__RiiP_cAMP 
#>                     0.00160                     0.01500 
#>           kf_RiiPxC__RiiP_C           kb_RiiPxC__RiiP_C 
#>                     0.03800                     0.00260 
#>       kf_cAMPxRii__Rii_cAMP       kb_cAMPxRii__Rii_cAMP 
#>                     0.01500                     0.00160 
#>   kf_Rii_CxcAMP__Rii_C_cAMP   kb_Rii_CxcAMP__Rii_C_cAMP 
#>                     0.49600                     1.41300 
#>             kf_RiixC__Rii_C   kf_Rii_cAMPxC__Rii_C_cAMP 
#>                     2.10000                     0.29840 
#>   kb_Rii_cAMPxC__Rii_C_cAMP  kf_Rii_C_cAMP__RiiP_C_cAMP 
#>                     0.01800                    33.00000 
#>             kb_RiixC__Rii_C                   AKAPoff_1 
#>                     0.00030                     2.60000 
#>                   AKAPoff_3                    AKAPon_1 
#>                    20.00000                     0.45000 
#>                    AKAPon_3                  kf_C_AKAR4 
#>                     2.00000                     0.01800 
#>                  kb_C_AKAR4                  kcat_AKARp 
#>                     0.10600                    10.20000 
#>                       kmOFF                        kmON 
#>                   100.00000                     1.00000 
#>                        KD_T                      b_AKAP 
#>                     0.70000                     0.00000

Load Experiments (data)

experiments <- sbtab.data(SBtab)

# for example, these are the input and initial state of experiment 1:
print(experiments[[1]]$input)
#> [1] 1
print(experiments[[1]]$initialState)
#>           Rii          cAMP          RiiP         Rii_C     RiiP_cAMP 
#>          6.30          0.00          0.00          0.63          0.00 
#>        RiiP_C   RiiP_C_cAMP             C      Rii_cAMP    Rii_C_cAMP 
#>          0.00          0.00          0.00          0.00          0.00 
#>           CaN      RiiP_CaN RiiP_cAMP_CaN         AKAR4       AKAR4_C 
#>          1.50          0.00          0.00          0.20          0.00 
#>        AKAR4p 
#>          0.00

# pick parameters for simulation
nInput <- length(experiments[[1]]$input)
p <- SBtab$Parameter[["!DefaultValue"]]
par_names <- SBtab$Parameter[["!Name"]]
names(p) <- par_names
print(p)
#>            kf_Rii_C__RiiP_C kf_RiiP_CxcAMP__RiiP_C_cAMP 
#>                    33.00000                     0.49600 
#> kf_RiiP_cAMPxC__RiiP_C_cAMP kb_RiiP_cAMPxC__RiiP_C_cAMP 
#>                     0.00545                     0.01560 
#>     kb_RiiPXcAMP__RiiP_cAMP     kf_RiiPXcAMP__RiiP_cAMP 
#>                     0.00160                     0.01500 
#>           kf_RiiPxC__RiiP_C           kb_RiiPxC__RiiP_C 
#>                     0.03800                     0.00260 
#>       kf_cAMPxRii__Rii_cAMP       kb_cAMPxRii__Rii_cAMP 
#>                     0.01500                     0.00160 
#>   kf_Rii_CxcAMP__Rii_C_cAMP   kb_Rii_CxcAMP__Rii_C_cAMP 
#>                     0.49600                     1.41300 
#>             kf_RiixC__Rii_C   kf_Rii_cAMPxC__Rii_C_cAMP 
#>                     2.10000                     0.29840 
#>   kb_Rii_cAMPxC__Rii_C_cAMP  kf_Rii_C_cAMP__RiiP_C_cAMP 
#>                     0.01800                    33.00000 
#>             kb_RiixC__Rii_C                   AKAPoff_1 
#>                     0.00030                     2.60000 
#>                   AKAPoff_3                    AKAPon_1 
#>                    20.00000                     0.45000 
#>                    AKAPon_3                  kf_C_AKAR4 
#>                     2.00000                     0.01800 
#>                  kb_C_AKAR4                  kcat_AKARp 
#>                     0.10600                    10.20000 
#>                       kmOFF                        kmON 
#>                   100.00000                     1.00000 
#>                        KD_T 
#>                     0.70000

Simulate

Function simulator.stoch will output a function s, which will always simulate the scenarios described in experiment e (i.e., same initial conditions, same inputs), but for user supplied parameters.

exp_ind <- 9 #index of the experiment to consider
e <- experiments[[exp_ind]]

# generate a function (s) that simulates a trajectory given a parameter in input
s <- simulator.stoch(experiment = e, model.tab = SBtab, vol = 4e-16)
# vol indicates the volume in m^3 where the reactions take place

# simulate a trajectory (y) given parameter p
y <- s(p)

Plot

par(bty='n',xaxp=c(80,120,4))
plot(e$outputTimes, e$outputValues$AKAR4pOUT,ylim=c(90,180), ylab="AKAP79",
     xlab="t",
     main=sprintf("Experiment %i",exp_ind),
     lwd=1.5)
lines(e$outputTimes, y$output, col="blue")

gg-Plot

require(ggplot2)
#> Loading required package: ggplot2

D<-data.frame(time=experiments[[exp_ind]]$outputTime,
              AKAP79=experiments[[exp_ind]]$outputValues$AKAR4pOUT,
              AKAP79ERR=experiments[[exp_ind]]$errorValues$AKAR4pOUT,
              sim=y$output)
ggplot(D) +
  geom_linerange(mapping=aes(x=time,y=AKAP79,ymin=AKAP79-AKAP79ERR,ymax=AKAP79+AKAP79ERR),na.rm=TRUE) +
  geom_point(mapping=aes(x=time,y=AKAP79),na.rm=TRUE) +
  geom_line(mapping=aes(x=time,y=sim),color="purple",lwd=1.2)